Student ID:

(0)	(0)	(0)	(0)	(0)	(0)
(1)	(1)	(1)	1	(1)	(1)
(2)	(2)	(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)	(3)	(3)
(4)	(4)	$4)$	(4)	(4)	(4)
(5)	(5)	(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)	(6)	(6)
(7)	(7)	(7)	(7)	(7)	(7)
(8)	8	(8)	8	(8)	(8)
(9)	(9)	(9)	(9)	(9)	(9)

Instructions: fill completely the bubbles with the digits of the SID (one for each column); in the lower part of the sheet, fill completely the bubbles with the correct answers to the corresponding question. Use a black or dark blue pen or pencil, trying to fill completely the inside of the bubble. Write only in the designated areas.

Last Name

\qquad First name: \qquad Signature:

Mark the answers of the multiple-choice questions

(8) (A) (B) (C) (D) (E) (F)
(9) (A) (B) (C) (D) (E) (F)
(10) (A) (B) (C) (D) (E) (F)
(11) (A) (B) (C) (D) (E) (F) (C)
(12) (A) (B) (C) (D) (E) (F) (C)
(13) (A) (B) (C) (D) (E) (F) (C)
(14) (A) (B) (C) (D) (E) (C)
(1) Let X and Y be statements. If we know that X implies Y, then we can also conclude that(a) X is true, and Y is also true.(b) Y cannot be false.(c) If Y is true, then X is true.(d) If Y is false, then X is false.(e) If X is false, then Y is false.(f) X cannot be false.(g) At least one of X and Y is true.
(2) Let X and Y be statements. If we want to DISPROVE the claim that "Both X and Y are true", we need to show that(a) At least one of X and Y are false.(b) X and Y are both false.(c) X is false(d) Y is false.(e) X does not imply Y, and Y does not imply X.(f) Exactly one of X and Y are false.(g) X is true if and only if Y is false.
(3) Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", we need to show that(a) At least one of X and Y are false.(b) X and Y are both false.(c) X is false.(d) Y is false.(e) X does not imply Y, and Y does not imply X.(f) Exactly one of X and Y are false.(g) X is true if and only if Y is false.
(4) Let X and Y be statements. If we want to DISPROVE the claim that " $X \Longrightarrow Y$ ", we need to show that(a) Y is true, but X is false.(b) X is true, but Y is false.(c) X is false.(d) Y is false.(e) X and Y are both false.(f) Exactly one of X and Y are false.(g) At least one of X and Y is false.
(5) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that ${ }^{"} P(x)$ is true for all x of type X ", then we have to(a) Show that there exists an x of type X for which $P(x)$ is false.(b) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(c) Show that for every x in $X, P(x)$ is false.(d) Show that $P(x)$ being true does not necessarily imply that x is of type X.(e) Assume there exists an x of type X for which $P(x)$ is true, and derive a contradiction.(f) Show that there are no objects x of type X.(g) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.
(6) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that $" P(x)$ is true for some x of type X ", then we have to(a) Show that there exists an x of type X for which $P(x)$ is false.(b) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(c) Show that for every x in $X, P(x)$ is false.(d) Show that $P(x)$ being true does not necessarily imply that x is of type X.(e) Assume that $P(x)$ is true for every x in X, and derive a contradiction.(f) Show that there are no objects x of type X.(g) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.
(7) Let $P(n, m)$ be a property about two integers n and m. If we want to prove that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we should do the following:(a) Let n be an arbitrary integer. Then find an integer m (possibly depending on n) such that $P(n, m)$ is true.(b) Let n and m be arbitrary integers. Then show that $P(n, m)$ is true.(c) Find an integer n and an integer m such that $P(n, m)$ is true.(d) Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that $P(n, m)$ is true.(e) Find an integer n such that $P(n, m)$ is true for every integer m.(f) Find an integer m such that $P(n, m)$ is true for every integer n.(g) Show that whenever $P(n, m)$ is true, then n and m are integers.
(8) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we need to prove that(a) There exists an integer n such that $P(n, m)$ is false for all integers m.(b) There exists integers n, m such that $P(n, m)$ is false.(c) For every integer n, and every integer m, the property $P(n, m)$ is false.(d) For every integer n, there exists an integer m such that $P(n, m)$ is false.(e) For every integer m, there exists an integer n such that $P(n, m)$ is false.(f) There exists an integer m such that $P(n, m)$ is false for all integers n.(g) If $P(n, m)$ is true, then n and m are not integers.
(9) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that $P(n, m)$ is true for all integers $m "$, then we need to prove that(a) There exists an integer n such that $P(n, m)$ is false for all integers m.(b) There exists integers n, m such that $P(n, m)$ is false.(c) For every integer n, and every integer m, the property $P(n, m)$ is false.(d) For every integer n, there exists an integer m such that $P(n, m)$ is false.(e) For every integer m, there exists an integer n such that $P(n, m)$ is false.(f) There exists an integer m such that $P(n, m)$ is false for all integers n.(g) If $P(n, m)$ is true, then n and m are not integers.
(10) Let X and Y be statements. Which of the following strategies is NOT a valid way to show that " $X \Longrightarrow Y$ "?(a) Assume that X is true, and then use this to show that Y is true.(b) Assume that Y is false, and then use this to show that X is false.(c) Show that either X is false, or Y is true, or both.(d) Assume that X is true, and Y is false, and deduce a contradiction.(e) Assume that X is false, and Y is true, and deduce a contradiction.(f) Show that X implies some intermediate statement Z, and then show that $Z \Longrightarrow Y$.(g) Show that some intermediate statement $Z \Longrightarrow Y$, and then show that $X \Longrightarrow Z$.
(11) Suppose one wishes to prove that "if all X are Y, then all Z are W ". To do this, it would suffice to show that(a) All Z are X, and all Y are W.(b) All X are Z, and all Y are W.(c) All Z are X, and all W are Y.(d) All X are Z, and all W are Y.(e) All Y are X, and all Z are W.(f) All Z are Y, and all X are W.(g) All Y are Z, and all W are X.
(12) Suppose one wishes to prove that "if some X are Y, then some Z are W". To do this, it would suffice to show that(a) All X are Z, and all Y are W.(b) Some X are Z, and all Y are W.(c) All Z are X, and all Y are W.(d) All X are Z, and some Y are W.(e) Some Z are X, and some Y are W.(f) Some Z are X, and all Y are W.(g) All Z are X, and all W are Y.
(13) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that Y is false, we can conclude that(a) X is false.(b) Z is false.(c) X implies Z.(d) Z is false and X implies Z . Correct Answer. X is false and X implies Z .(e) X is false and Z is false and X implies Z.(f) None of the above conclusions can be drawn.
(14) [Var. 1] Let X, Y, Z be statements. Suppose we know that X implies Y, and that Z implies X. If we also know that Y is false, we can conclude that(a) X is false.(b) Z is false.(c) Z implies Y.(d) Z is false and Z implies Y.(e) X is false and Z implies Y.(f) X is false, Z is false, and Z implies Y.(g) None of the above conclusions can be drawn.
[Var. 2] Let X, Y, Z be statements. Suppose we know that " X is true implies Y is true", and " X is false implies Z is true". If we know that Z is false, then we can conclude that(a) X is false.(b) X is true.(c) Y is true.(d) X is true and Y is true.(e) X is false and Y is true.(f) X is false, X is true, and Y is true.(g) None of the above conclusions can be drawn.
[Var. 3] Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that X is false, we can conclude that(a) Y is false.(b) Z is false.(c) Z implies X.(d) Y is false and Z is false.(e) Y is false and Z implies X.(f) Y is false, Z is false and Z implies X.(g) No conclusion can be drawn.

