Student ID:

Instructions: fill completely the bubbles with the digits of the SID (one for each column); in the lower part of the sheet, fill completely the bubbles with the correct answers to the corresponding question. Use a black or dark blue pen or pencil, trying to fill completely the inside of the bubble. Write only in the designated areas.

Last Name

First name:
Signature:

Mark the answers of the multiple-choice questions

(8) (A) (B) (C) (D) (F) (G)
(9) (A) (B) (C) (D) (E) (G)
(10) (A) (B) (C) (D) (E) (F)
(11) (A) (B) (C) (D) (E) (F) (C)
(12) (A) (B) (C) (D) (E) (F) (C)
(13) (A) (B) (C) (D) (E) (F) (C)
(14) (A) (B) (C) (D) (E) (G)
(1) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that X is false, we can conclude that(a) Y is false and Z is false.(b) Z implies X.(c) Y is false.(d) Y is false, Z is false and Z implies X.(e) Z is false.(f) No conclusion can be drawn.(g) Y is false and Z implies X.
(2) Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", we need to show that(a) X does not imply Y, and Y does not imply X.(b) X is false.(c) Exactly one of X and Y are false.(d) X is true if and only if Y is false.(e) X and Y are both false.(f) At least one of X and Y are false.(g) Y is false.
(3) Let X and Y be statements. If we want to DISPROVE the claim that " $X \Longrightarrow Y$ ", we need to show that(a) X is true, but Y is false.(b) Y is false.(c) X is false.(d) Exactly one of X and Y are false.(e) At least one of X and Y is false.(f) X and Y are both false.(g) Y is true, but X is false.
(4) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we need to prove that(a) There exists an integer m such that $P(n, m)$ is false for all integers n.(b) For every integer m, there exists an integer n such that $P(n, m)$ is false.(c) There exists an integer n such that $P(n, m)$ is false for all integers m.(d) There exists integers n, m such that $P(n, m)$ is false.(e) For every integer n, and every integer m, the property $P(n, m)$ is false(f) If $P(n, m)$ is true, then n and m are not integers.(g) For every integer n, there exists an integer m such that $P(n, m)$ is false.
(5) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that $" P(x)$ is true for all x of type X ", then we have to(a) Assume there exists an x of type X for which $P(x)$ is true, and derive a contradiction.(b) Show that for every x in $X, P(x)$ is false.(c) Show that there exists an x of type X for which $P(x)$ is false.(d) Show that $P(x)$ being true does not necessarily imply that x is of type X.(e) Show that there are no objects x of type X.(f) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(g) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.
(6) Let X and Y be statements. If we want to DISPROVE the claim that "Both X and Y are true", we need to show that(a) Exactly one of X and Y are false.(b) X is true if and only if Y is false.(c) X is false.(d) Y is false.(e) X does not imply Y, and Y does not imply X.(f) At least one of X and Y are false.(g) X and Y are both false.
(7) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that $" P(x)$ is true for some x of type X ", then we have to(a) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(b) Assume that $P(x)$ is true for every x in X, and derive a contradiction.(c) Show that there exists an x of type X for which $P(x)$ is false.(d) Show that there are no objects x of type X.(e) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(f) Show that for every x in $X, P(x)$ is false.(g) Show that $P(x)$ being true does not necessarily imply that x is of type X.
(8) Let $P(n, m)$ be a property about two integers n and m. If we want to prove that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we should do the following:(a) Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that $P(n, m)$ is true.(b) Let n and m be arbitrary integers. Then show that $P(n, m)$ is true.(c) Let n be an arbitrary integer. Then find an integer m (possibly depending on n) such that $P(n, m)$ is true.(d) Show that whenever $P(n, m)$ is true, then n and m are integers.(e) Find an integer m such that $P(n, m)$ is true for every integer n.(f) Find an integer n such that $P(n, m)$ is true for every integer m.(g) Find an integer n and an integer m such that $P(n, m)$ is true.
(9) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that Y is false, we can conclude that(a) None of the above conclusions can be drawn.(b) Z is false.(c) Z is false and X implies Z . Correct Answer. X is false and X implies Z .(d) X is false.(e) X implies Z .(f) X is false and Z is false and X implies Z.
(10) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that $P(n, m)$ is true for all integers $m "$, then we need to prove that(a) There exists integers n, m such that $P(n, m)$ is false.(b) There exists an integer n such that $P(n, m)$ is false for all integers m.(c) For every integer m, there exists an integer n such that $P(n, m)$ is false.(d) If $P(n, m)$ is true, then n and m are not integers.(e) For every integer n, there exists an integer m such that $P(n, m)$ is false.(f) For every integer n, and every integer m, the property $P(n, m)$ is false.(g) There exists an integer m such that $P(n, m)$ is false for all integers n.
(11) Suppose one wishes to prove that "if all X are Y, then all Z are W ". To do this, it would suffice to show that(a) All Z are X, and all W are Y.(b) All X are Z, and all Y are W.(c) All X are Z, and all W are Y.(d) All Y are Z, and all W are X.(e) All Z are X, and all Y are W.(f) All Y are X, and all Z are W.(g) All Z are Y, and all X are W.
(12) Let X and Y be statements. If we know that X implies Y, then we can also conclude that(a) At least one of X and Y is true.(b) X cannot be false.(c) If Y is true, then X is true.(d) Y cannot be false.(e) If Y is false, then X is false.(f) X is true, and Y is also true.(g) If X is false, then Y is false.
(13) Suppose one wishes to prove that "if some X are Y, then some Z are W ". To do this, it would suffice to show that(a) Some Z are X, and some Y are W.(b) All Z are X, and all W are Y.(c) All X are Z, and some Y are W.(d) Some Z are X, and all Y are W.(e) All Z are X, and all Y are W.(f) Some X are Z, and all Y are W.(g) All X are Z, and all Y are W.
(14) Let X and Y be statements. Which of the following strategies is NOT a valid way to show that " $X \Longrightarrow Y$ "?(a) Assume that X is true, and Y is false, and deduce a contradiction.(b) Show that either X is false, or Y is true, or both.(c) Show that X implies some intermediate statement Z, and then show that $Z \Longrightarrow Y$.(d) Show that some intermediate statement $Z \Longrightarrow Y$, and then show that $X \Longrightarrow Z$.(e) Assume that X is false, and Y is true, and deduce a contradiction.(f) Assume that X is true, and then use this to show that Y is true.(g) Assume that Y is false, and then use this to show that X is false.

Student ID:

Instructions: fill completely the bubbles with the digits of the SID (one for each column); in the lower part of the sheet, fill completely the bubbles with the correct answers to the corresponding question. Use a black or dark blue pen or pencil, trying to fill completely the inside of the bubble. Write only in the designated areas.

Last Name

First name:
Signature:

Mark the answers of the multiple-choice questions

(1) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that Y is false, we can conclude that(a) X is false and Z is false and X implies Z .(b) Z is false and X implies Z . Correct Answer. X is false and X implies Z .(c) Z is false.(d) X implies Z.(e) None of the above conclusions can be drawn.(f) X is false.
(2) Suppose one wishes to prove that "if all X are Y, then all Z are W ". To do this, it would suffice to show that(a) All Y are Z, and all W are X.(b) All X are Z, and all W are Y.(c) All Y are X, and all Z are W.(d) All Z are Y, and all X are W.(e) All X are Z, and all Y are W.(f) All Z are X, and all Y are W.(g) All Z are X, and all W are Y.
(3) Suppose one wishes to prove that "if some X are Y, then some Z are W". To do this, it would suffice to show that(a) Some Z are X, and some Y are W.(b) All X are Z, and all Y are W.(c) All Z are X, and all W are Y.(d) All Z are X, and all Y are W.(e) Some X are Z, and all Y are W.(f) All X are Z, and some Y are W.(g) Some Z are X, and all Y are W.
(4) Let X and Y be statements. If we want to DISPROVE the claim that " $X \Longrightarrow Y$ ", we need to show that(a) X is false.(b) At least one of X and Y is false.(c) X and Y are both false.(d) Y is false.(e) X is true, but Y is false.(f) Exactly one of X and Y are false.(g) Y is true, but X is false.
(5) Let X and Y be statements. Which of the following strategies is NOT a valid way to show that " $X \Longrightarrow Y$ "?(a) Show that some intermediate statement $Z \Longrightarrow Y$, and then show that $X \Longrightarrow Z$.(b) Assume that X is true, and Y is false, and deduce a contradiction.(c) Show that either X is false, or Y is true, or both.(d) Assume that Y is false, and then use this to show that X is false.(e) Assume that X is false, and Y is true, and deduce a contradiction.(f) Assume that X is true, and then use this to show that Y is true.(g) Show that X implies some intermediate statement Z, and then show that $Z \Longrightarrow Y$.
(6) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that " $P(x)$ is true for all x of type X ", then we have to(a) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(b) Show that $P(x)$ being true does not necessarily imply that x is of type X.(c) Show that there exists an x of type X for which $P(x)$ is false.(d) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(e) Assume there exists an x of type X for which $P(x)$ is true, and derive a contradiction.(f) Show that for every x in $X, P(x)$ is false.(g) Show that there are no objects x of type X.
(7) Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", we need to show that(a) X and Y are both false.(b) X is true if and only if Y is false.(c) Exactly one of X and Y are false.(d) X does not imply Y, and Y does not imply X.(e) X is false.(f) Y is false.(g) At least one of X and Y are false.
(8) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that X is false, we can conclude that(a) Y is false, Z is false and Z implies X.(b) Y is false and Z implies X.(c) Z is false.(d) Z implies X.(e) No conclusion can be drawn.(f) Y is false and Z is false.(g) Y is false.
(9) Let $P(n, m)$ be a property about two integers n and m. If we want to prove that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we should do the following:(a) Show that whenever $P(n, m)$ is true, then n and m are integers.(b) Find an integer n and an integer m such that $P(n, m)$ is true.(c) Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that $P(n, m)$ is true.(d) Find an integer m such that $P(n, m)$ is true for every integer n.(e) Let n and m be arbitrary integers. Then show that $P(n, m)$ is true.(f) Let n be an arbitrary integer. Then find an integer m (possibly depending on n) such that $P(n, m)$ is true.(g) Find an integer n such that $P(n, m)$ is true for every integer m.
(10) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that " $P(x)$ is true for some x of type X ", then we have to(a) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(b) Show that there exists an x of type X for which $P(x)$ is false.(c) Show that $P(x)$ being true does not necessarily imply that x is of type X.(d) Show that for every x in $X, P(x)$ is false.(e) Assume that $P(x)$ is true for every x in X, and derive a contradiction.(f) Show that there are no objects x of type X.(g) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.
(11) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we need to prove that(a) For every integer n, there exists an integer m such that $P(n, m)$ is false.(b) There exists integers n, m such that $P(n, m)$ is false.(c) If $P(n, m)$ is true, then n and m are not integers.(d) There exists an integer n such that $P(n, m)$ is false for all integers m.(e) There exists an integer m such that $P(n, m)$ is false for all integers n.(f) For every integer m, there exists an integer n such that $P(n, m)$ is false.(g) For every integer n, and every integer m, the property $P(n, m)$ is false.
(12) Let X and Y be statements. If we want to DISPROVE the claim that "Both X and Y are true", we need to show that(a) Exactly one of X and Y are false.(b) Y is false.(c) X is true if and only if Y is false.(d) X and Y are both false.(e) X does not imply Y, and Y does not imply X.(f) X is false.(g) At least one of X and Y are false.
(13) Let X and Y be statements. If we know that X implies Y, then we can also conclude that(a) If Y is false, then X is false.(b) X cannot be false.(c) X is true, and Y is also true.(d) If Y is true, then X is true.
(14) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that $P(n, m)$ is true for all integers $m "$, then we need to prove that(a) There exists integers n, m such that $P(n, m)$ is false.(b) For every integer n, there exists an integer m such that $P(n, m)$ is false.(c) For every integer n, and every integer m, the property $P(n, m)$ is false.(d) For every integer m, there exists an integer n such that $P(n, m)$ is false.(e) There exists an integer n such that $P(n, m)$ is false for all integers m.(f) There exists an integer m such that $P(n, m)$ is false for all integers n.(g) If $P(n, m)$ is true, then n and m are not integers.

Student ID:

(0)	(0)	(0)	(0)	(0)	(0)
(1)	(1)	$1)$	1	1	(1)
(2)	(2)	(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)	(3)	(3)
(4)	(4)	$4)$	(4)	(4)	(4)
(5)	(5)	(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)	(6)	(6)
(7)	(7)	(7)	(7)	(7)	(7)
(8)	8	(8)	8	(8)	(8)
(9)	(9)	(9)	9	(9)	(9)

Instructions: fill completely the bubbles with the digits of the SID (one for each column); in the lower part of the sheet, fill completely the bubbles with the correct answers to the corresponding question. Use a black or dark blue pen or pencil, trying to fill completely the inside of the bubble. Write only in the designated areas.

Last Name: .First name:

Signature:

Mark the answers of the multiple-choice questions

(1)	(A)	(B)	(C)	(D)		(F)	(G)	(8)	(A)	(B)		(D)			(G)
(2)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(9)	(A)	(B)	(C)	(D)	(E)	(F)	(G)
(3)	(A)	(B)	(C)	(D)	(E)	(${ }^{\text {c }}$	(G)	(10)	(A)	(B)	(C)	(D)	(E)	(F)	(G)
(4)	(A)	(B)	(C)	(D)	(E)	(${ }^{\text {a }}$	(G)	(11)	(A)	(B)	(C)	(D)	(E)	(F)	(G)
(5)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(12)	(A)	(B)	(C)	(D)	(E)	(F)	(G)
(6)	(A)	(B)	(C)	(D)	(E)	(${ }^{\text {a }}$	(G)	(13)	(A)	(B)	(C)	(D)	(E)	(${ }^{\text {F }}$	(G)
(7)	(A)	(B)	(c)	(D)	(E)	(F)	(G)	(14)	(A)	B	(C)	(D)	(E)	(F)	(G)

(1) Let X and Y be statements. Which of the following strategies is NOT a valid way to show that " $X \Longrightarrow Y$ "?(a) Assume that Y is false, and then use this to show that X is false.(b) Assume that X is false, and Y is true, and deduce a contradiction.(c) Show that some intermediate statement $Z \Longrightarrow Y$, and then show that $X \Longrightarrow Z$.(d) Assume that X is true, and Y is false, and deduce a contradiction.(e) Show that X implies some intermediate statement Z, and then show that $Z \Longrightarrow Y$.(f) Assume that X is true, and then use this to show that Y is true.(g) Show that either X is false, or Y is true, or both.
(2) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that Y is false, we can conclude that(a) None of the above conclusions can be drawn.(b) Z is false and X implies Z . Correct Answer. X is false and X implies Z .(c) X is false.(d) Z is false.(e) X is false and Z is false and X implies Z.(f) X implies Z.
(3) Let $P(n, m)$ be a property about two integers n and m. If we want to prove that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we should do the following:(a) Find an integer m such that $P(n, m)$ is true for every integer n.(b) Find an integer n such that $P(n, m)$ is true for every integer m.(c) Let n be an arbitrary integer. Then find an integer m (possibly depending on n) such that $P(n, m)$ is true.(d) Find an integer n and an integer m such that $P(n, m)$ is true.(e) Let n and m be arbitrary integers. Then show that $P(n, m)$ is true.(f) Show that whenever $P(n, m)$ is true, then n and m are integers.(g) Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that $P(n, m)$ is true.
(4) Suppose one wishes to prove that "if all X are Y, then all Z are W ". To do this, it would suffice to show that(a) All Z are X, and all W are Y.(b) All Z are X, and all Y are W.(c) All X are Z, and all Y are W.(d) All X are Z, and all W are Y.(e) All Z are Y, and all X are W.(f) All Y are X, and all Z are W.(g) All Y are Z, and all W are X.
(5) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that ${ }^{"} P(x)$ is true for some x of type X ", then we have to(a) Show that $P(x)$ being true does not necessarily imply that x is of type X.(b) Assume that $P(x)$ is true for every x in X, and derive a contradiction.(c) Show that there exists an x of type X for which $P(x)$ is false.(d) Show that for every x in $X, P(x)$ is false.(e) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(f) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(g) Show that there are no objects x of type X.
(6) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Z implies X. If we also know that Y is false, we can conclude that(a) Z implies Y.(b) X is false.(c) X is false and Z implies Y.(d) Z is false.(e) X is false, Z is false, and Z implies Y.(f) Z is false and Z implies Y.(g) None of the above conclusions can be drawn.
(7) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that " $P(x)$ is true for all x of type X ", then we have to(a) Show that there are no objects x of type X.(b) Show that there exists an x of type X for which $P(x)$ is false.(c) Show that $P(x)$ being true does not necessarily imply that x is of type X.(d) Assume there exists an x of type X for which $P(x)$ is true, and derive a contradiction.(e) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(f) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(g) Show that for every x in $X, P(x)$ is false.
(8) Let X and Y be statements. If we want to DISPROVE the claim that " $X \Longrightarrow Y$ ", we need to show that(a) At least one of X and Y is false.(b) Exactly one of X and Y are false.(c) X is true, but Y is false.(d) X is false.(e) X and Y are both false.(f) Y is false.(g) Y is true, but X is false.
(9) Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", we need to show that(a) Y is false.(b) X is true if and only if Y is false.(c) Exactly one of X and Y are false.(d) X does not imply Y, and Y does not imply X.(e) X is false.(f) At least one of X and Y are false.(g) X and Y are both false.
(10) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we need to prove that(a) There exists an integer m such that $P(n, m)$ is false for all integers n.(b) For every integer n, and every integer m, the property $P(n, m)$ is false.(c) For every integer n, there exists an integer m such that $P(n, m)$ is false.(d) There exists an integer n such that $P(n, m)$ is false for all integers m.(e) There exists integers n, m such that $P(n, m)$ is false.(f) If $P(n, m)$ is true, then n and m are not integers.(g) For every integer m, there exists an integer n such that $P(n, m)$ is false.
(11) Let X and Y be statements. If we want to DISPROVE the claim that "Both X and Y are true", we need to show that(a) X is true if and only if Y is false.(b) X does not imply Y, and Y does not imply X.(c) At least one of X and Y are false.(d) Exactly one of X and Y are false.(e) X and Y are both false.(f) Y is false.(g) X is false.
(12) Let X and Y be statements. If we know that X implies Y, then we can also conclude that
(a) If Y is false, then X is false.(b) If X is false, then Y is false.(c) X is true, and Y is also true.(d) If Y is true, then X is true.(e) At least one of X and Y is true.(f) X cannot be false.(g) Y cannot be false.
(13) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that $P(n, m)$ is true for all integers $m "$, then we need to prove that(a) There exists an integer m such that $P(n, m)$ is false for all integers n.(b) There exists integers n, m such that $P(n, m)$ is false.(c) For every integer n, there exists an integer m such that $P(n, m)$ is false.(d) There exists an integer n such that $P(n, m)$ is false for all integers m.(e) For every integer n, and every integer m, the property $P(n, m)$ is false.(f) If $P(n, m)$ is true, then n and m are not integers.(g) For every integer m, there exists an integer n such that $P(n, m)$ is false.
(14) Suppose one wishes to prove that "if some X are Y, then some Z are W ". To do this, it would suffice to show that(a) Some Z are X, and some Y are W.(b) Some Z are X, and all Y are W.(c) All Z are X, and all W are Y.(d) All Z are X, and all Y are W.(e) All X are Z, and all Y are W.(f) Some X are Z, and all Y are W.(g) All X are Z, and some Y are W.

Student ID:

Instructions: fill completely the bubbles with the digits of the SID (one for each column); in the lower part of the sheet, fill completely the bubbles with the correct answers to the corresponding question. Use a black or dark blue pen or pencil, trying to fill completely the inside of the bubble. Write only in the designated areas.

Last Name

First name:
Signature:

Mark the answers of the multiple-choice questions

(1)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(8)	(A)						(G)
(2)	(A)	(B)	(C)	(D)	(E)	(${ }^{\text {E }}$	(G)	(9)	(A)						(G)
(3)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(10)	(A)						(G)
(4)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(11)	(A)						(G)
(5)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(12)	(A)						(G)
(6)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(13)	(A)						(G)
(7)	(A)	B	(C)	(D)	(E)	(F)	((14)	(4)		(D		((G)

(1) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we need to prove that(a) There exists an integer n such that $P(n, m)$ is false for all integers m.(b) There exists an integer m such that $P(n, m)$ is false for all integers n.(c) There exists integers n, m such that $P(n, m)$ is false.(d) For every integer n, and every integer m, the property $P(n, m)$ is false.(e) For every integer n, there exists an integer m such that $P(n, m)$ is false.(f) For every integer m, there exists an integer n such that $P(n, m)$ is false.(g) If $P(n, m)$ is true, then n and m are not integers.
(2) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that Y is false, we can conclude that(a) Z is false and X implies Z . Correct Answer. X is false and X implies Z .(b) X is false.(c) None of the above conclusions can be drawn.(d) X implies Z.(e) Z is false.(f) X is false and Z is false and X implies Z.
(3) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that ${ }^{"} P(x)$ is true for all x of type X ", then we have to(a) Show that $P(x)$ being true does not necessarily imply that x is of type X.(b) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(c) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(d) Assume there exists an x of type X for which $P(x)$ is true, and derive a contradiction.(e) Show that for every x in $X, P(x)$ is false.(f) Show that there are no objects x of type X.(g) Show that there exists an x of type X for which $P(x)$ is false.
(4) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that X is false, we can conclude that(a) Z is false.(b) Y is false, Z is false and Z implies X.(c) Y is false.(d) Z implies X.(e) Y is false and Z is false.(f) Y is false and Z implies X.(g) No conclusion can be drawn.
(5) Let X and Y be statements. If we want to DISPROVE the claim that "Both X and Y are true", we need to show that(a) X is true if and only if Y is false.(b) X and Y are both false.(c) X is false.(d) Exactly one of X and Y are false.(e) X does not imply Y, and Y does not imply X.(f) Y is false.(g) At least one of X and Y are false.
(6) Suppose one wishes to prove that "if some X are Y, then some Z are W". To do this, it would suffice to show that(a) Some Z are X, and all Y are W.(b) All Z are X, and all Y are W.(c) Some Z are X, and some Y are W.(d) All Z are X, and all W are Y.(e) All X are Z, and some Y are W.(f) All X are Z, and all Y are W.(g) Some X are Z, and all Y are W.
(7) Let X and Y be statements. Which of the following strategies is NOT a valid way to show that " $X \Longrightarrow Y$ "?(a) Show that some intermediate statement $Z \Longrightarrow Y$, and then show that $X \Longrightarrow Z$.(b) Assume that X is true, and Y is false, and deduce a contradiction.(c) Show that X implies some intermediate statement Z, and then show that $Z \Longrightarrow Y$.(d) Show that either X is false, or Y is true, or both.(e) Assume that Y is false, and then use this to show that X is false.(f) Assume that X is false, and Y is true, and deduce a contradiction.(g) Assume that X is true, and then use this to show that Y is true.
(8) Let $P(n, m)$ be a property about two integers n and m. If we want to prove that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we should do the following:(a) Let n and m be arbitrary integers. Then show that $P(n, m)$ is true.(b) Let n be an arbitrary integer. Then find an integer m (possibly depending on n) such that $P(n, m)$ is true.(c) Find an integer n and an integer m such that $P(n, m)$ is true.(d) Show that whenever $P(n, m)$ is true, then n and m are integers.(e) Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that $P(n, m)$ is true.(f) Find an integer m such that $P(n, m)$ is true for every integer n.(g) Find an integer n such that $P(n, m)$ is true for every integer m.
(9) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that $P(n, m)$ is true for all integers m ", then we need to prove that(a) There exists integers n, m such that $P(n, m)$ is false.(b) For every integer n, and every integer m, the property $P(n, m)$ is false.(c) There exists an integer m such that $P(n, m)$ is false for all integers n.(d) For every integer m, there exists an integer n such that $P(n, m)$ is false.(e) There exists an integer n such that $P(n, m)$ is false for all integers m.(f) If $P(n, m)$ is true, then n and m are not integers.(g) For every integer n, there exists an integer m such that $P(n, m)$ is false.
(10) Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", we need to show that(a) X is true if and only if Y is false.(b) Y is false.(c) X is false.(d) Exactly one of X and Y are false.(e) X and Y are both false.(f) X does not imply Y, and Y does not imply X.(g) At least one of X and Y are false.
(11) Let X and Y be statements. If we want to DISPROVE the claim that " $X \Longrightarrow Y$ ", we need to show that(a) Exactly one of X and Y are false.(b) At least one of X and Y is false.(c) X is true, but Y is false.(d) X and Y are both false.(e) Y is true, but X is false.(f) X is false.(g) Y is false.
(12) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that " $P(x)$ is true for some x of type X ", then we have to(a) Show that for every x in $X, P(x)$ is false.(b) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(c) Show that there are no objects x of type X.(d) Show that $P(x)$ being true does not necessarily imply that x is of type X.(e) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(f) Show that there exists an x of type X for which $P(x)$ is false.(g) Assume that $P(x)$ is true for every x in X, and derive a contradiction.
(13) Let X and Y be statements. If we know that X implies Y, then we can also conclude that(a) If X is false, then Y is false.(b) Y cannot be false.(c) If Y is false, then X is false.(d) At least one of X and Y is true.(e) X cannot be false.(f) If Y is true, then X is true.
(14) Suppose one wishes to prove that "if all X are Y, then all Z are W ". To do this, it would suffice to show that(a) All Z are X, and all Y are W.(b) All Y are X, and all Z are W.(c) All X are Z, and all W are Y.(d) All Z are Y, and all X are W.(e) All Z are X, and all W are Y.(f) All Y are Z, and all W are X.(g) All X are Z, and all Y are W.

Student ID:

(0)	(0)	(0)	(0)	(0)	(0)
(1)	(1)	(1)	1	(1)	(1)
(2)	(2)	(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)	(3)	(3)
(4)	(4)	$4)$	(4)	(4)	(4)
(5)	(5)	(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)	(6)	(6)
(7)	(7)	(7)	(7)	(7)	(7)
(8)	8	(8)	8	(8)	(8)
(9)	(9)	(9)	(9)	(9)	(9)

Instructions: fill completely the bubbles with the digits of the SID (one for each column); in the lower part of the sheet, fill completely the bubbles with the correct answers to the corresponding question. Use a black or dark blue pen or pencil, trying to fill completely the inside of the bubble. Write only in the designated areas.

Last Name

\qquad First name:

Signature:

Mark the answers of the multiple-choice questions

(1)	(A)	(B)					(G)	(8)	(A)	B	(C)	(D)			(G)
(2)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(9)	(A)	(B)	(C)				(G)
(3)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(10)	(A)	(B)	(C)				(G)
(4)	(A)	(B)	(c)	(D)	(E)	(F)	(G)	(11)	(A)	(B)	(c)				(G)
(5)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(12)	(A)	(B)	(C)				(G)
(6)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(13)	(A)	(B)	(C)				(G)
(7)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(14)	(A)	B	(c)	(D)	E		(G)

(1) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that ${ }^{"} P(x)$ is true for some x of type X ", then we have to(a) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(b) Show that $P(x)$ being true does not necessarily imply that x is of type X.(c) Show that there exists an x of type X for which $P(x)$ is false.(d) Assume that $P(x)$ is true for every x in X, and derive a contradiction.(e) Show that for every x in $X, P(x)$ is false.(f) Show that there are no objects x of type X.(g) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.
(2) Let X and Y be statements. If we know that X implies Y, then we can also conclude that(a) If Y is true, then X is true.(b) If X is false, then Y is false.(c) Y cannot be false.(d) X cannot be false.
(3) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that Y is false, we can conclude that(a) X is false.(b) X is false and Z is false and X implies Z.(c) None of the above conclusions can be drawn.(d) Z is false and X implies Z . Correct Answer. X is false and X implies Z.(e) X implies Z.(f) Z is false.
(4) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we need to prove that(a) For every integer n, there exists an integer m such that $P(n, m)$ is false.(b) If $P(n, m)$ is true, then n and m are not integers.(c) There exists integers n, m such that $P(n, m)$ is false.(d) For every integer m, there exists an integer n such that $P(n, m)$ is false.(e) For every integer n, and every integer m, the property $P(n, m)$ is false.(f) There exists an integer m such that $P(n, m)$ is false for all integers n.(g) There exists an integer n such that $P(n, m)$ is false for all integers m.
(5) Suppose one wishes to prove that "if all X are Y, then all Z are W ". To do this, it would suffice to show that(a) All Z are X, and all Y are W.(b) All Y are Z, and all W are X.(c) All Z are X, and all W are Y.(d) All X are Z, and all W are Y.(e) All Z are Y, and all X are W.(f) All Y are X, and all Z are W.(g) All X are Z, and all Y are W.
(6) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that " $P(x)$ is true for all x of type X ", then we have to(a) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(b) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(c) Show that there are no objects x of type X.(d) Assume there exists an x of type X for which $P(x)$ is true, and derive a contradiction.(e) Show that there exists an x of type X for which $P(x)$ is false.(f) Show that $P(x)$ being true does not necessarily imply that x is of type X.(g) Show that for every x in $X, P(x)$ is false.
(7) Let X and Y be statements. Which of the following strategies is NOT a valid way to show that " $X \Longrightarrow Y$ "?(a) Show that X implies some intermediate statement Z, and then show that $Z \Longrightarrow Y$.(b) Assume that Y is false, and then use this to show that X is false.(c) Assume that X is true, and then use this to show that Y is true.(d) Assume that X is false, and Y is true, and deduce a contradiction.(e) Show that either X is false, or Y is true, or both.(f) Assume that X is true, and Y is false, and deduce a contradiction.(g) Show that some intermediate statement $Z \Longrightarrow Y$, and then show that $X \Longrightarrow Z$.
(8) Let X and Y be statements. If we want to DISPROVE the claim that "Both X and Y are true", we need to show that(a) Y is false.(b) X is true if and only if Y is false.(c) X and Y are both false.(d) X is false.(e) X does not imply Y, and Y does not imply X.(f) At least one of X and Y are false.(g) Exactly one of X and Y are false.
(9) Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", we need to show that(a) X is false.(b) X and Y are both false.(c) Y is false.(d) At least one of X and Y are false.(e) Exactly one of X and Y are false.(f) X is true if and only if Y is false.(g) X does not imply Y, and Y does not imply X.
(10) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that X is false, we can conclude that(a) Y is false and Z implies X.(b) Z is false.(c) Y is false, Z is false and Z implies X.(d) Y is false.(e) Y is false and Z is false.(f) Z implies X.(g) No conclusion can be drawn.
(11) Suppose one wishes to prove that "if some X are Y, then some Z are W ". To do this, it would suffice to show that(a) All X are Z, and some Y are W.(b) All Z are X, and all W are Y.(c) Some Z are X, and all Y are W.(d) All X are Z, and all Y are W.(e) Some Z are X, and some Y are W.(f) All Z are X, and all Y are W.(g) Some X are Z, and all Y are W.
(12) Let $P(n, m)$ be a property about two integers n and m. If we want to prove that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we should do the following:(a) Show that whenever $P(n, m)$ is true, then n and m are integers.(b) Let n be an arbitrary integer. Then find an integer m (possibly depending on n) such that $P(n, m)$ is true.(c) Let n and m be arbitrary integers. Then show that $P(n, m)$ is true.(d) Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that $P(n, m)$ is true.(e) Find an integer n such that $P(n, m)$ is true for every integer m.(f) Find an integer n and an integer m such that $P(n, m)$ is true.(g) Find an integer m such that $P(n, m)$ is true for every integer n.
(13) Let X and Y be statements. If we want to DISPROVE the claim that " $X \Longrightarrow Y$ ", we need to show that(a) Y is false.(b) X and Y are both false.(c) X is true, but Y is false.(d) Y is true, but X is false.(e) X is false.(f) Exactly one of X and Y are false.(g) At least one of X and Y is false.
(14) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that $P(n, m)$ is true for all integers $m "$, then we need to prove that(a) There exists an integer n such that $P(n, m)$ is false for all integers m.(b) For every integer n, there exists an integer m such that $P(n, m)$ is false.(c) For every integer m, there exists an integer n such that $P(n, m)$ is false.(d) There exists integers n, m such that $P(n, m)$ is false.(e) For every integer n, and every integer m, the property $P(n, m)$ is false.(f) There exists an integer m such that $P(n, m)$ is false for all integers n.(g) If $P(n, m)$ is true, then n and m are not integers.

Student ID:

(0)	(0)	(0)	(0)	(0)	(0)
(1)	(1)	(1)	1	(1)	(1)
(2)	(2)	(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)	(3)	(3)
(4)	(4)	$4)$	(4)	(4)	(4)
(5)	(5)	(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)	(6)	(6)
(7)	(7)	(7)	(7)	(7)	(7)
(8)	8	(8)	8	(8)	(8)
(9)	(9)	(9)	(9)	(9)	(9)

Instructions: fill completely the bubbles with the digits of the SID (one for each column); in the lower part of the sheet, fill completely the bubbles with the correct answers to the corresponding question. Use a black or dark blue pen or pencil, trying to fill completely the inside of the bubble. Write only in the designated areas.

Last Name

First name:
Signature:

Mark the answers of the multiple-choice questions

(1)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(8)	(A)						(G)
(2)	(A)	(B)	(C)	(D)	(E)	(${ }^{\text {E }}$	(G)	(9)	(A)						(G)
(3)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(10)	(A)						(G)
(4)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(11)	(A)						(G)
(5)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(12)	(A)						(G)
(6)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(13)	(A)						(G)
(7)	(A)	B	(C)	(D)	(E)	(F)	((14)	(4)		(D		((G)

(1) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that $" P(x)$ is true for some x of type X ", then we have to(a) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(b) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(c) Assume that $P(x)$ is true for every x in X, and derive a contradiction.(d) Show that for every x in $X, P(x)$ is false.(e) Show that $P(x)$ being true does not necessarily imply that x is of type X.(f) Show that there are no objects x of type X.(g) Show that there exists an x of type X for which $P(x)$ is false.
(2) Let X and Y be statements. If we want to DISPROVE the claim that " $X \Longrightarrow Y$ ", we need to show that(a) X is true, but Y is false.(b) Exactly one of X and Y are false.(c) X and Y are both false.(d) Y is true, but X is false.(e) At least one of X and Y is false.(f) X is false.(g) Y is false.
(3) Suppose one wishes to prove that "if all X are Y, then all Z are W ". To do this, it would suffice to show that(a) All X are Z, and all Y are W.(b) All Z are X, and all Y are W.(c) All Z are X, and all W are Y.(d) All X are Z, and all W are Y.(e) All Y are X, and all Z are W.(f) All Z are Y, and all X are W.(g) All Y are Z, and all W are X.
(4) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we need to prove that(a) There exists an integer n such that $P(n, m)$ is false for all integers m.(b) For every integer m, there exists an integer n such that $P(n, m)$ is false.(c) There exists an integer m such that $P(n, m)$ is false for all integers n.(d) There exists integers n, m such that $P(n, m)$ is false.(e) For every integer n, and every integer m, the property $P(n, m)$ is false.(f) If $P(n, m)$ is true, then n and m are not integers.(g) For every integer n, there exists an integer m such that $P(n, m)$ is false.
(5) Let $P(n, m)$ be a property about two integers n and m. If we want to prove that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we should do the following:(a) Find an integer n such that $P(n, m)$ is true for every integer m.(b) Find an integer m such that $P(n, m)$ is true for every integer n.(c) Let n and m be arbitrary integers. Then show that $P(n, m)$ is true.(d) Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that $P(n, m)$ is true.(e) Show that whenever $P(n, m)$ is true, then n and m are integers.(f) Find an integer n and an integer m such that $P(n, m)$ is true.(g) Let n be an arbitrary integer. Then find an integer m (possibly depending on n) such that $P(n, m)$ is true.
(6) Let X and Y be statements. If we know that X implies Y, then we can also conclude that(a) X cannot be false.(b) If X is false, then Y is false.(c) At least one of X and Y is true.(d) If Y is false, then X is false.(e) X is true, and Y is also true.(f) If Y is true, then X is true.(g) Y cannot be false.
(7) Suppose one wishes to prove that "if some X are Y, then some Z are W ". To do this, it would suffice to show that(a) All Z are X, and all W are Y.(b) All X are Z, and all Y are W.(c) All Z are X, and all Y are W.(d) Some Z are X, and some Y are W.(e) Some X are Z, and all Y are W.(f) All X are Z, and some Y are W.(g) Some Z are X, and all Y are W.
(8) Let X and Y be statements. If we want to DISPROVE the claim that "Both X and Y are true", we need to show that(a) X and Y are both false.(b) At least one of X and Y are false.(c) X is false.(d) Exactly one of X and Y are false.(e) X does not imply Y, and Y does not imply X.(f) Y is false.(g) X is true if and only if Y is false.
(9) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Z implies X. If we also know that Y is false, we can conclude that(a) Z implies Y.(b) X is false.(c) X is false, Z is false, and Z implies Y.(d) Z is false and Z implies Y.(e) X is false and Z implies Y.(f) Z is false.(g) None of the above conclusions can be drawn.
(10) Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", we need to show that(a) X and Y are both false.(b) At least one of X and Y are false.(c) Y is false.(d) X does not imply Y, and Y does not imply X.(e) X is true if and only if Y is false.(f) X is false.(g) Exactly one of X and Y are false.
(11) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that Y is false, we can conclude that(a) X implies Z.(b) X is false and Z is false and X implies Z .(c) Z is false.(d) Z is false and X implies Z . Correct Answer. X is false and X implies Z .(e) X is false.(f) None of the above conclusions can be drawn.
(12) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that ${ }^{" P}(x)$ is true for all x of type X ", then we have to(a) Show that $P(x)$ being true does not necessarily imply that x is of type X.(b) Assume there exists an x of type X for which $P(x)$ is true, and derive a contradiction.(c) Show that for every x in $X, P(x)$ is false.(d) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(e) Show that there are no objects x of type X.(f) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(g) Show that there exists an x of type X for which $P(x)$ is false.
(13) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that $P(n, m)$ is true for all integers $m "$, then we need to prove that(a) If $P(n, m)$ is true, then n and m are not integers.(b) For every integer n, there exists an integer m such that $P(n, m)$ is false.(c) There exists integers n, m such that $P(n, m)$ is false.(d) There exists an integer n such that $P(n, m)$ is false for all integers m.(e) There exists an integer m such that $P(n, m)$ is false for all integers n.(f) For every integer n, and every integer m, the property $P(n, m)$ is false.(g) For every integer m, there exists an integer n such that $P(n, m)$ is false.
(14) Let X and Y be statements. Which of the following strategies is NOT a valid way to show that " $X \Longrightarrow Y$ "?(a) Show that either X is false, or Y is true, or both.(b) Assume that X is true, and Y is false, and deduce a contradiction.(c) Show that X implies some intermediate statement Z, and then show that $Z \Longrightarrow Y$.(d) Show that some intermediate statement $Z \Longrightarrow Y$, and then show that $X \Longrightarrow Z$.(e) Assume that X is true, and then use this to show that Y is true.(f) Assume that Y is false, and then use this to show that X is false.(g) Assume that X is false, and Y is true, and deduce a contradiction.

Student ID:

Instructions: fill completely the bubbles with the digits of the SID (one for each column); in the lower part of the sheet, fill completely the bubbles with the correct answers to the corresponding question. Use a black or dark blue pen or pencil, trying to fill completely the inside of the bubble. Write only in the designated areas.

Last Name

First name:
Signature:

Mark the answers of the multiple-choice questions

(1)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(8)	(A)						(G)
(2)	(A)	(B)	(C)	(D)	(E)	(${ }^{\text {E }}$	(G)	(9)	(A)						(G)
(3)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(10)	(A)						(G)
(4)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(11)	(A)						(G)
(5)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(12)	(A)						(G)
(6)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(13)	(A)						(G)
(7)	(A)	B	(C)	(D)	(E)	(F)	((14)	(4)		(D		((G)

(1) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we need to prove that(a) There exists integers n, m such that $P(n, m)$ is false.(b) There exists an integer n such that $P(n, m)$ is false for all integers m.(c) For every integer n, there exists an integer m such that $P(n, m)$ is false.(d) There exists an integer m such that $P(n, m)$ is false for all integers n.(e) If $P(n, m)$ is true, then n and m are not integers.(f) For every integer n, and every integer m, the property $P(n, m)$ is false.(g) For every integer m, there exists an integer n such that $P(n, m)$ is false.
(2) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that X is false, we can conclude that(a) Y is false and Z is false.(b) No conclusion can be drawn.(c) Y is false and Z implies X.(d) Y is false, Z is false and Z implies X.(e) Z implies X.(f) Y is false.(g) Z is false.
(3) Let X and Y be statements. If we know that X implies Y, then we can also conclude that(a) Y cannot be false.(b) If Y is true, then X is true.(c) X cannot be false.(d) X is true, and Y is also true.(e) At least one of X and Y is true.(f) If Y is false, then X is false.(g) If X is false, then Y is false.
(4) Let X and Y be statements. Which of the following strategies is NOT a valid way to show that " $X \Longrightarrow Y$ "?(a) Show that either X is false, or Y is true, or both.(b) Assume that Y is false, and then use this to show that X is false.(c) Assume that X is false, and Y is true, and deduce a contradiction.(d) Assume that X is true, and then use this to show that Y is true.(e) Show that X implies some intermediate statement Z, and then show that $Z \Longrightarrow Y$.(f) Assume that X is true, and Y is false, and deduce a contradiction.(g) Show that some intermediate statement $Z \Longrightarrow Y$, and then show that $X \Longrightarrow Z$.
(5) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that Y is false, we can conclude that(a) Z is false.(b) X is false and Z is false and X implies Z .(c) X implies Z.(d) X is false.(e) Z is false and X implies Z . Correct Answer. X is false and X implies Z .(f) None of the above conclusions can be drawn.
(6) Let X and Y be statements. If we want to DISPROVE the claim that "Both X and Y are true", we need to show that(a) At least one of X and Y are false.(b) X does not imply Y, and Y does not imply X.(c) Y is false.(d) X is true if and only if Y is false.(e) X is false.(f) Exactly one of X and Y are false.(g) X and Y are both false.
(7) Let X and Y be statements. If we want to DISPROVE the claim that " $X \Longrightarrow Y$ ", we need to show that(a) Exactly one of X and Y are false.(b) At least one of X and Y is false.(c) X is true, but Y is false.(d) X and Y are both false.(e) Y is true, but X is false.(f) X is false.(g) Y is false.
(8) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that $P(n, m)$ is true for all integers m ", then we need to prove that(a) For every integer n, there exists an integer m such that $P(n, m)$ is false.(b) There exists an integer m such that $P(n, m)$ is false for all integers n.(c) If $P(n, m)$ is true, then n and m are not integers.(d) There exists an integer n such that $P(n, m)$ is false for all integers m.(e) For every integer m, there exists an integer n such that $P(n, m)$ is false.(f) There exists integers n, m such that $P(n, m)$ is false.(g) For every integer n, and every integer m, the property $P(n, m)$ is false.
(9) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that ${ }^{\prime} P(x)$ is true for some x of type X ", then we have to(a) Show that $P(x)$ being true does not necessarily imply that x is of type X.(b) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(c) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(d) Assume that $P(x)$ is true for every x in X, and derive a contradiction.(e) Show that for every x in $X, P(x)$ is false.(f) Show that there exists an x of type X for which $P(x)$ is false.(g) Show that there are no objects x of type X.
(10) Suppose one wishes to prove that "if some X are Y, then some Z are W ". To do this, it would suffice to show that(a) Some Z are X, and all Y are W.(b) All X are Z, and all Y are W.(c) Some X are Z, and all Y are W.(d) All Z are X, and all Y are W.(e) All Z are X, and all W are Y.(f) Some Z are X, and some Y are W.(g) All X are Z, and some Y are W.
(11) Suppose one wishes to prove that "if all X are Y, then all Z are W ". To do this, it would suffice to show that(a) All Y are X, and all Z are W.(b) All Y are Z, and all W are X.(c) All Z are X, and all Y are W.(d) All Z are Y, and all X are W.(e) All Z are X, and all W are Y.(f) All X are Z, and all Y are W.(g) All X are Z, and all W are Y.
(12) Let $P(n, m)$ be a property about two integers n and m. If we want to prove that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we should do the following:(a) Find an integer n such that $P(n, m)$ is true for every integer m.(b) Let n be an arbitrary integer. Then find an integer m (possibly depending on n) such that $P(n, m)$ is true.(c) Find an integer m such that $P(n, m)$ is true for every integer n.(d) Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that $P(n, m)$ is true.(e) Let n and m be arbitrary integers. Then show that $P(n, m)$ is true.(f) Show that whenever $P(n, m)$ is true, then n and m are integers.(g) Find an integer n and an integer m such that $P(n, m)$ is true.
(13) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that ${ }^{" P} P(x)$ is true for all x of type X ", then we have to(a) Show that for every x in $X, P(x)$ is false.(b) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(c) Show that there exists an x of type X for which $P(x)$ is false.(d) Show that $P(x)$ being true does not necessarily imply that x is of type X.(e) Show that there are no objects x of type X.(f) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(g) Assume there exists an x of type X for which $P(x)$ is true, and derive a contradiction.
(14) Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", we need to show that(a) X does not imply Y, and Y does not imply X.(b) X is true if and only if Y is false.(c) Y is false.(d) Exactly one of X and Y are false.(e) X is false.(f) At least one of X and Y are false.(g) X and Y are both false.

Student ID:

(0)	(0)	(0)	(0)	(0)	(0)
(1)	(1)	(1)	1	(1)	(1)
(2)	(2)	(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)	(3)	(3)
(4)	(4)	$4)$	(4)	(4)	(4)
(5)	(5)	(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)	(6)	(6)
(7)	(7)	(7)	(7)	(7)	(7)
(8)	8	(8)	8	(8)	(8)
(9)	(9)	(9)	(9)	(9)	(9)

Instructions: fill completely the bubbles with the digits of the SID (one for each column); in the lower part of the sheet, fill completely the bubbles with the correct answers to the corresponding question. Use a black or dark blue pen or pencil, trying to fill completely the inside of the bubble. Write only in the designated areas.

Last Name

First name:
Signature:

Mark the answers of the multiple-choice questions

(1)	(A)	(B)					(G)	(8)	(A)	B	(C)	(D)			(G)
(2)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(9)	(A)	(B)	(C)				(G)
(3)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(10)	(A)	(B)	(C)				(G)
(4)	(A)	(B)	(c)	(D)	(E)	(F)	(G)	(11)	(A)	(B)	(c)				(G)
(5)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(12)	(A)	(B)	(C)				(G)
(6)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(13)	(A)	(B)	(C)				(G)
(7)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(14)	(A)	B	(c)	(D)	E		(G)

(1) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that ${ }^{"} P(x)$ is true for some x of type X ", then we have to(a) Assume that $P(x)$ is true for every x in X, and derive a contradiction.(b) Show that $P(x)$ being true does not necessarily imply that x is of type X.(c) Show that there exists an x of type X for which $P(x)$ is false.(d) Show that for every x in $X, P(x)$ is false.(e) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(f) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(g) Show that there are no objects x of type X.
(2) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we need to prove that(a) There exists integers n, m such that $P(n, m)$ is false.(b) For every integer m, there exists an integer n such that $P(n, m)$ is false.(c) For every integer n, and every integer m, the property $P(n, m)$ is false.(d) For every integer n, there exists an integer m such that $P(n, m)$ is false.(e) There exists an integer m such that $P(n, m)$ is false for all integers n.(f) There exists an integer n such that $P(n, m)$ is false for all integers m.(g) If $P(n, m)$ is true, then n and m are not integers.
(3) Let X and Y be statements. If we want to DISPROVE the claim that "Both X and Y are true", we need to show that(a) Exactly one of X and Y are false.(b) Y is false.(c) At least one of X and Y are false.(d) X does not imply Y, and Y does not imply X.(e) X is false.(f) X is true if and only if Y is false.(g) X and Y are both false.
(4) Suppose one wishes to prove that "if all X are Y, then all Z are W ". To do this, it would suffice to show that(a) All Z are Y, and all X are W.(b) All Y are Z, and all W are X.(c) All Y are X, and all Z are W.(d) All Z are X, and all W are Y.(e) All X are Z, and all Y are W.(f) All X are Z, and all W are Y.(g) All Z are X, and all Y are W.
(5) Let X and Y be statements. Which of the following strategies is NOT a valid way to show that " $X \Longrightarrow Y$ "?(a) Show that some intermediate statement $Z \Longrightarrow Y$, and then show that $X \Longrightarrow Z$.(b) Assume that Y is false, and then use this to show that X is false.(c) Assume that X is true, and then use this to show that Y is true.(d) Assume that X is true, and Y is false, and deduce a contradiction.(e) Assume that X is false, and Y is true, and deduce a contradiction.(f) Show that either X is false, or Y is true, or both.(g) Show that X implies some intermediate statement Z, and then show that $Z \Longrightarrow Y$.
(6) Let X and Y be statements. If we know that X implies Y, then we can also conclude that(a) If Y is false, then X is false.(b) X is true, and Y is also true.(c) If Y is true, then X is true.(d) Y cannot be false.(e) X cannot be false.(f) If X is false, then Y is false.(g) At least one of X and Y is true.
(7) Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", we need to show that(a) X does not imply Y, and Y does not imply X.(b) X is true if and only if Y is false.(c) Y is false.(d) At least one of X and Y are false.(e) X and Y are both false.(f) X is false.(g) Exactly one of X and Y are false.
(8) Suppose one wishes to prove that "if some X are Y, then some Z are W". To do this, it would suffice to show that(a) Some X are Z, and all Y are W.(b) Some Z are X, and some Y are W.(c) All Z are X, and all W are Y.(d) All X are Z, and all Y are W.(e) All X are Z, and some Y are W.(f) Some Z are X, and all Y are W.(g) All Z are X, and all Y are W.
(9) Let $P(n, m)$ be a property about two integers n and m. If we want to prove that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we should do the following:(a) Let n and m be arbitrary integers. Then show that $P(n, m)$ is true.(b) Let n be an arbitrary integer. Then find an integer m (possibly depending on n) such that $P(n, m)$ is true.(c) Find an integer m such that $P(n, m)$ is true for every integer n.(d) Find an integer n and an integer m such that $P(n, m)$ is true.(e) Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that $P(n, m)$ is true.(f) Show that whenever $P(n, m)$ is true, then n and m are integers.(g) Find an integer n such that $P(n, m)$ is true for every integer m.
(10) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that X is false, we can conclude that(a) Z implies X.(b) Y is false, Z is false and Z implies X.(c) Y is false and Z implies X.(d) No conclusion can be drawn.(e) Z is false.(f) Y is false and Z is false.(g) Y is false.
(11) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that ${ }^{"} P(x)$ is true for all x of type X ", then we have to(a) Assume there exists an x of type X for which $P(x)$ is true, and derive a contradiction.(b) Show that there are no objects x of type X.(c) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(d) Show that for every x in $X, P(x)$ is false.(e) Show that there exists an x of type X for which $P(x)$ is false.(f) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(g) Show that $P(x)$ being true does not necessarily imply that x is of type X.
(12) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that $P(n, m)$ is true for all integers $m "$, then we need to prove that(a) For every integer n, and every integer m, the property $P(n, m)$ is false.(b) If $P(n, m)$ is true, then n and m are not integers.(c) For every integer n, there exists an integer m such that $P(n, m)$ is false.(d) There exists an integer n such that $P(n, m)$ is false for all integers m.(e) There exists an integer m such that $P(n, m)$ is false for all integers n.(f) For every integer m, there exists an integer n such that $P(n, m)$ is false.(g) There exists integers n, m such that $P(n, m)$ is false.
(13) Let X and Y be statements. If we want to DISPROVE the claim that " $X \Longrightarrow Y$ ", we need to show that(a) X is false.(b) Y is false.(c) X is true, but Y is false.(d) X and Y are both false.(e) At least one of X and Y is false.(f) Y is true, but X is false.(g) Exactly one of X and Y are false.
(14) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that Y is false, we can conclude that(a) Z is false.(b) X is false and Z is false and X implies Z.(c) Z is false and X implies Z. Correct Answer. X is false and X implies Z.(d) None of the above conclusions can be drawn.(e) X is false.(f) X implies Z.

Student ID:

(0)	(0)	(0)	(0)	(0)	(0)
(1)	(1)	(1)	1	(1)	(1)
(2)	(2)	(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)	(3)	(3)
(4)	(4)	$4)$	(4)	(4)	(4)
(5)	(5)	(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)	(6)	(6)
(7)	(7)	(7)	(7)	(7)	(7)
(8)	8	(8)	8	(8)	(8)
(9)	(9)	(9)	(9)	(9)	(9)

Instructions: fill completely the bubbles with the digits of the SID (one for each column); in the lower part of the sheet, fill completely the bubbles with the correct answers to the corresponding question. Use a black or dark blue pen or pencil, trying to fill completely the inside of the bubble. Write only in the designated areas.

Last Name

\qquad First name:

Signature:

Mark the answers of the multiple-choice questions

(1) Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", we need to show that(a) X does not imply Y, and Y does not imply X.(b) At least one of X and Y are false.(c) Exactly one of X and Y are false.(d) X is false.(e) Y is false.(f) X and Y are both false.(g) X is true if and only if Y is false.
(2) Let $P(n, m)$ be a property about two integers n and m. If we want to prove that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we should do the following:(a) Let n be an arbitrary integer. Then find an integer m (possibly depending on n) such that $P(n, m)$ is true.(b) Let n and m be arbitrary integers. Then show that $P(n, m)$ is true.(c) Find an integer n such that $P(n, m)$ is true for every integer m.(d) Show that whenever $P(n, m)$ is true, then n and m are integers.(e) Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that $P(n, m)$ is true.(f) Find an integer m such that $P(n, m)$ is true for every integer n.(g) Find an integer n and an integer m such that $P(n, m)$ is true.
(3) Let X and Y be statements. If we know that X implies Y, then we can also conclude that(a) If Y is true, then X is true.(b) X is true, and Y is also true.(c) If Y is false, then X is false.(d) At least one of X and Y is true.(e) X cannot be false.(f) Y cannot be false.(g) If X is false, then Y is false.
(4) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we need to prove that(a) There exists an integer m such that $P(n, m)$ is false for all integers n.(b) For every integer n, and every integer m, the property $P(n, m)$ is false.(c) For every integer m, there exists an integer n such that $P(n, m)$ is false.(d) For every integer n, there exists an integer m such that $P(n, m)$ is false.(e) There exists an integer n such that $P(n, m)$ is false for all integers m.(f) If $P(n, m)$ is true, then n and m are not integers.(g) There exists integers n, m such that $P(n, m)$ is false.
(5) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that $P(n, m)$ is true for all integers m ", then we need to prove that(a) For every integer n, and every integer m, the property $P(n, m)$ is false.(b) For every integer m, there exists an integer n such that $P(n, m)$ is false.(c) If $P(n, m)$ is true, then n and m are not integers.(d) There exists an integer m such that $P(n, m)$ is false for all integers n.(e) There exists integers n, m such that $P(n, m)$ is false.(f) There exists an integer n such that $P(n, m)$ is false for all integers m.(g) For every integer n, there exists an integer m such that $P(n, m)$ is false.
(6) Let X and Y be statements. Which of the following strategies is NOT a valid way to show that " $X \Longrightarrow Y$ "?(a) Show that X implies some intermediate statement Z, and then show that $Z \Longrightarrow Y$.(b) Show that either X is false, or Y is true, or both.(c) Assume that X is true, and Y is false, and deduce a contradiction.(d) Show that some intermediate statement $Z \Longrightarrow Y$, and then show that $X \Longrightarrow Z$.(e) Assume that X is true, and then use this to show that Y is true.(f) Assume that X is false, and Y is true, and deduce a contradiction.(g) Assume that Y is false, and then use this to show that X is false.
(7) Suppose one wishes to prove that "if all X are Y, then all Z are W ". To do this, it would suffice to show that(a) All Z are Y, and all X are W.(b) All X are Z, and all W are Y.(c) All Y are Z, and all W are X.(d) All X are Z, and all Y are W.(e) All Z are X, and all Y are W.(f) All Z are X, and all W are Y.(g) All Y are X, and all Z are W.
(8) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that Y is false, we can conclude that(a) X implies Z .(b) X is false and Z is false and X implies Z.(c) Z is false and X implies Z . Correct Answer. X is false and X implies Z .(d) Z is false.(e) None of the above conclusions can be drawn.(f) X is false.
(9) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that $" P(x)$ is true for some x of type X ", then we have to(a) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(b) Assume that $P(x)$ is true for every x in X, and derive a contradiction.(c) Show that there are no objects x of type X.(d) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(e) Show that there exists an x of type X for which $P(x)$ is false.(f) Show that for every x in $X, P(x)$ is false.(g) Show that $P(x)$ being true does not necessarily imply that x is of type X.
(10) Let X and Y be statements. If we want to DISPROVE the claim that " $X \Longrightarrow Y$ ", we need to show that(a) Exactly one of X and Y are false.(b) X is false.(c) X is true, but Y is false.(d) At least one of X and Y is false.(e) Y is true, but X is false.(f) X and Y are both false.(g) Y is false.
(11) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that ${ }^{"} P(x)$ is true for all x of type X ", then we have to(a) Show that for every x in $X, P(x)$ is false.(b) Assume there exists an x of type X for which $P(x)$ is true, and derive a contradiction.(c) Show that there exists an x of type X for which $P(x)$ is false.(d) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(e) Show that $P(x)$ being true does not necessarily imply that x is of type X.(f) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(g) Show that there are no objects x of type X.
(12) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Z implies X. If we also know that Y is false, we can conclude that(a) None of the above conclusions can be drawn.(b) X is false and Z implies Y.(c) Z is false and Z implies Y.(d) Z implies Y.(e) X is false.(f) X is false, Z is false, and Z implies Y.(g) Z is false.
(13) Let X and Y be statements. If we want to DISPROVE the claim that "Both X and Y are true", we need to show that(a) Y is false.(b) At least one of X and Y are false.(c) Exactly one of X and Y are false.(d) X and Y are both false.(e) X is false.(f) X does not imply Y, and Y does not imply X.(g) X is true if and only if Y is false.
(14) Suppose one wishes to prove that "if some X are Y, then some Z are W ". To do this, it would suffice to show that(a) All X are Z, and some Y are W.(b) All Z are X, and all Y are W.(c) Some Z are X, and some Y are W.(d) All Z are X, and all W are Y.(e) Some X are Z, and all Y are W.(f) Some Z are X, and all Y are W.(g) All X are Z, and all Y are W.

Student ID:

(0)	(0)	(0)	(0)	(0)	(0)
(1)	(1)	(1)	1	(1)	(1)
(2)	(2)	(2)	(2)	(2)	(2)
(3)	(3)	(3)	(3)	(3)	(3)
(4)	(4)	$4)$	(4)	(4)	(4)
(5)	(5)	(5)	(5)	(5)	(5)
(6)	(6)	(6)	(6)	(6)	(6)
(7)	(7)	(7)	(7)	(7)	(7)
(8)	8	(8)	8	(8)	(8)
(9)	(9)	(9)	(9)	(9)	(9)

Instructions: fill completely the bubbles with the digits of the SID (one for each column); in the lower part of the sheet, fill completely the bubbles with the correct answers to the corresponding question. Use a black or dark blue pen or pencil, trying to fill completely the inside of the bubble. Write only in the designated areas.

Last Name

First name:
Signature:

Mark the answers of the multiple-choice questions

(1)	(A)	(B)						(8)	(A)	(B)	(c)	(D)			(G)
(2)	(A)	(B)	(c)	(D)	(E)	(F)	(G)	(9)	(A)	(B)	(C)	(D)	(E)		(G)
(3)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(10)	(A)	(B)	(C)	(D)	(E)		(G)
(4)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(11)	(A)	(B)	(C)	(D)	(E)		(G)
(5)	(A)	(B)	(C)	(D)	(E)	(${ }^{\text {P }}$	(G)	(12)	(A)	(B)	(c)	(D)	(E)		(G)
(6)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(13)	(A)	(B)	(C)	(D)	(E)		(G)
(7)	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(14)	(A)	(B)	(C)	(D)	(E)		(G)

(1) Suppose one wishes to prove that "if some X are Y, then some Z are W ". To do this, it would suffice to show that(a) Some Z are X, and all Y are W.(b) All Z are X, and all Y are W.(c) Some Z are X, and some Y are W.(d) Some X are Z, and all Y are W.(e) All X are Z, and all Y are W.(f) All Z are X, and all W are Y.(g) All X are Z, and some Y are W.
(2) Let X and Y be statements. If we know that X implies Y, then we can also conclude that(a) If Y is false, then X is false.(b) Y cannot be false.(c) X is true, and Y is also true.(d) At least one of X and Y is true.(e) If X is false, then Y is false.(f) If Y is true, then X is true.(g) X cannot be false.
(3) Let X and Y be statements. Which of the following strategies is NOT a valid way to show that " $X \Longrightarrow Y$ "?(a) Assume that X is false, and Y is true, and deduce a contradiction.(b) Assume that Y is false, and then use this to show that X is false.(c) Show that some intermediate statement $Z \Longrightarrow Y$, and then show that $X \Longrightarrow Z$.(d) Show that either X is false, or Y is true, or both.(e) Assume that X is true, and then use this to show that Y is true.(f) Assume that X is true, and Y is false, and deduce a contradiction.(g) Show that X implies some intermediate statement Z, and then show that $Z \Longrightarrow Y$.
(4) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that ${ }^{\prime} P(x)$ is true for some x of type X ", then we have to(a) Show that there exists an x of type X for which $P(x)$ is false.(b) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(c) Show that $P(x)$ being true does not necessarily imply that x is of type X.(d) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(e) Show that for every x in $X, P(x)$ is false.(f) Show that there are no objects x of type X.(g) Assume that $P(x)$ is true for every x in X, and derive a contradiction.
(5) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that Y is false, we can conclude that(a) Z is false and X implies Z . Correct Answer. X is false and X implies Z .(b) X implies Z.(c) X is false.(d) Z is false.(e) None of the above conclusions can be drawn.(f) X is false and Z is false and X implies Z.
(6) Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", we need to show that(a) X is true if and only if Y is false.(b) Y is false.(c) At least one of X and Y are false.(d) X is false.(e) Exactly one of X and Y are false.(f) X and Y are both false.(g) X does not imply Y, and Y does not imply X.
(7) Let $P(n, m)$ be a property about two integers n and m. If we want to prove that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we should do the following:(a) Let n and m be arbitrary integers. Then show that $P(n, m)$ is true.(b) Let n be an arbitrary integer. Then find an integer m (possibly depending on n) such that $P(n, m)$ is true.(c) Show that whenever $P(n, m)$ is true, then n and m are integers.(d) Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that $P(n, m)$ is true.(e) Find an integer n such that $P(n, m)$ is true for every integer m.(f) Find an integer m such that $P(n, m)$ is true for every integer n.(g) Find an integer n and an integer m such that $P(n, m)$ is true.
(8) Let X and Y be statements. If we want to DISPROVE the claim that "Both X and Y are true", we need to show that(a) Y is false.(b) Exactly one of X and Y are false.(c) At least one of X and Y are false.(d) X is true if and only if Y is false.(e) X does not imply Y, and Y does not imply X.(f) X and Y are both false.(g) X is false.
(9) Suppose one wishes to prove that "if all X are Y, then all Z are W ". To do this, it would suffice to show that(a) All Y are X, and all Z are W.(b) All Z are Y, and all X are W.(c) All Y are Z, and all W are X.(d) All X are Z, and all Y are W.(e) All Z are X, and all Y are W.(f) All Z are X, and all W are Y.(g) All X are Z, and all W are Y.
(10) Let $P(x)$ be a property about some object x of type X. If we want to DISPROVE the claim that " $P(x)$ is true for all x of type X ", then we have to(a) Show that $P(x)$ being true does not necessarily imply that x is of type X.(b) Show that there exists an x of type X for which $P(x)$ is false.(c) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.(d) Assume there exists an x of type X for which $P(x)$ is true, and derive a contradiction.(e) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.(f) Show that there are no objects x of type X.(g) Show that for every x in $X, P(x)$ is false.
(11) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that $P(n, m)$ is true for all integers $m "$, then we need to prove that(a) For every integer m, there exists an integer n such that $P(n, m)$ is false.(b) There exists an integer m such that $P(n, m)$ is false for all integers n.(c) For every integer n, there exists an integer m such that $P(n, m)$ is false.(d) For every integer n, and every integer m, the property $P(n, m)$ is false.(e) If $P(n, m)$ is true, then n and m are not integers.(f) There exists integers n, m such that $P(n, m)$ is false.(g) There exists an integer n such that $P(n, m)$ is false for all integers m.
(12) Let $P(n, m)$ be a property about two integers n and m. If we want to DISPROVE the claim that "For every integer n, there exists an integer m such that $P(n, m)$ is true", then we need to prove that(a) There exists integers n, m such that $P(n, m)$ is false.(b) For every integer n, there exists an integer m such that $P(n, m)$ is false.(c) There exists an integer m such that $P(n, m)$ is false for all integers n.(d) For every integer m, there exists an integer n such that $P(n, m)$ is false.(e) There exists an integer n such that $P(n, m)$ is false for all integers m.(f) For every integer n, and every integer m, the property $P(n, m)$ is false.(g) If $P(n, m)$ is true, then n and m are not integers.
(13) Let X and Y be statements. If we want to DISPROVE the claim that " $X \Longrightarrow Y$ ", we need to show that(a) Y is true, but X is false.(b) Exactly one of X and Y are false.(c) Y is false.(d) X and Y are both false.(e) X is false.(f) X is true, but Y is false.(g) At least one of X and Y is false.
(14) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that X is false, we can conclude that(a) Z implies X.(b) Z is false.(c) Y is false and Z implies X.(d) Y is false.(e) Y is false and Z is false.(f) Y is false, Z is false and Z implies X.(g) No conclusion can be drawn.

