

Student ID:	0	0	0	0	0	0
	1	1	1	1	1	1
	2	2	2	2	2	2
	3	3	3	3	3	3
	4	4	4	4	4	4
	5	(5)	5	5	5	(5)
	6	6	6	6	6	6
	7	\bigcirc	7	7	7	7
	8	8	8	8	8	8
	9	9	9	9	9	9

Instructions: fill **completely** the bubbles with the digits of the SID (one for each column); in the lower part of the sheet, fill **completely** the bubbles with the correct answers to the corresponding question. Use a black or dark blue pen or pencil, trying to fill completely the inside of the bubble. Write only in the designated areas.

Last Name:.....Signature:....

(1)	(A)	(B)	\bigcirc	(D)	(E)	(\overline{F})	(G)	
• •	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
(2)	A	B	\bigcirc	\bigcirc	E	F	G	
(3)	A	B	\bigcirc	D	E	(\mathbf{F})	G	
(4)	A	B	\bigcirc	\bigcirc	E	F	G	
(5)	A	B	\bigcirc	\bigcirc	E	F	G	
(6)	A	B	\bigcirc	\bigcirc	E	F	G	
(7)	A	B	\bigcirc	\bigcirc	E	F	G	

Mark the answers of the multiple-choice questions

(8)	A	B	\bigcirc	D	E	(\mathbf{F})	G
(9)	A	B	\bigcirc	\bigcirc	E	(\mathbf{F})	G
(10)	A	B	\bigcirc	\bigcirc	E	(\mathbf{F})	G
(11)	A	B	\bigcirc	\bigcirc	E	(\mathbf{F})	G
(12)	A	B	\bigcirc	\bigcirc	E	(\mathbf{F})	G
(13)	A	B	\bigcirc	\bigcirc	E	(\mathbf{F})	G
(14)	A	B	\bigcirc	\bigcirc	E	F	G

(1)) Let X and Y be statements. If we know that X implies Y , then we can also conclude that
[<i>f</i>	f = 0.00%, d = 0.00%, non-responses: 2]

\Box (<i>a</i>) <i>X</i> is true, and <i>Y</i> is also true.	[1]	\bigcirc (e) If X is false, then Y is false.	[0]
\Box (b) Y cannot be false.	[2]	\Box (f) X cannot be false.	[1]
\Box (c) If Y is true, then X is true.	[1]	\Box (g) At least one of X and Y is true.	[0]
\Box (<i>d</i>) If <i>Y</i> is false, then <i>X</i> is false.	[0]		

(2) Let X and Y be statements. If we want to DISPROVE the claim that "Both X and Y are true", we need to show that 10^{-28} 57%. d = 0.00%1]

Lţ	= 28.57%, d =	0.00%, non-responses: 1	
----	---------------	-------------------------	--

\Box (a) At least one of X and Y are false.	[2]
(b) X and Y are both false.	[1]
(c) X is false.	[1]
\Box (d) Y is false.	[0]
\Box (e) X does not imply Y, and Y does not imply X.	[1]
\Box (f) Exactly one of X and Y are false.	[0]
\Box (g) X is true if and only if Y is false.	[1]

(3) Let X and Y be statements. If we want to DISPROVE the claim that "At least one of X and Y are true", we need to show that

f = 14.29%, d = 100.00%, non-respo	nses: 1	
------------------------------------	---------	--

\Box (a) At least one of X and Y are false.	[0]
(b) X and Y are both false.	[1]
(c) X is false.	[0]
\Box (d) Y is false.	[2]
\Box (e) X does not imply Y, and Y does not imply X.	[2]
(f) Exactly one of X and Y are false.	[0]
(g) X is true if and only if Y is false.	[1]

(4) Let X and Y be statements. If we want to DISPROVE the claim that "X \implies Y", we need to show that [f = 42.86%, d = 0.00%, non-responses: 1]

\Box (a) Y is true, but X is false.	[0]
\Box (b) X is true, but Y is false.	[3]
\Box (c) X is false.	[0]
\Box (d) Y is false.	[0]
\Box (e) X and Y are both false.	[1]
\Box (f) Exactly one of X and Y are false.	[2]
\Box (g) At least one of X and Y is false.	[0]

(5) Let P(x) be a property about some object x of type X. If we want to DISPROVE the claim that "P(x) is true for all x of type X", then we have to [f = 28.57%, d = 0.00%, non-responses: 1]

(a) Show that there exists an x of type X for which $P(x)$ is false.	[2]
(b) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.	[2]
(c) Show that for every x in X, $P(x)$ is false.	[0]
(d) Show that $P(x)$ being true does not necessarily imply that x is of type X.	[0]
\square (e) Assume there exists an x of type X for which $P(x)$ is true, and derive a contradiction.	[2]
(f) Show that there are no objects x of type X.	[0]
(g) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.	[0]

(6) Let P(x) be a property about some object x of type X. If we want to DISPROVE the claim that "P(x) is true for some x of type X", then we have to [f = 0.00%, d = 0.00%, non-responses: 2]

(a) Show that there exists an x of type X for which $P(x)$ is false.	[0]
(b) Show that there exists an x which is not of type X, but for which $P(x)$ is still true.	[0]
(c) Show that for every x in X, $P(x)$ is false.	[0]
\square (<i>d</i>) Show that $P(x)$ being true does not necessarily imply that x is of type X.	[1]
(e) Assume that $P(x)$ is true for every x in X, and derive a contradiction.	[2]
(f) Show that there are no objects x of type X.	[0]
(g) Show that for every x in X, there is a y not equal to x for which $P(y)$ is true.	[2]

(7) Let P(n,m) be a property about two integers *n* and *m*. If we want to prove that "For every integer *n*, there exists an integer *m* such that P(n,m) is true", then we should do the following: [f = 28.57%, d = 0.00%, non-responses: 1]

- (a) Let *n* be an arbitrary integer. Then find an integer *m* (possibly depending on *n*) such that P(n, m) is true. [2]
- (b) Let n and m be arbitrary integers. Then show that P(n,m) is true. (c) Find an integer n and an integer m such that P(n,m) is true. (0)
- \Box (c) This an integer *n* and an integer *m* such that I(n,m) is true.
- (d) Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that P(n, m) is true. [1]
- (e) Find an integer n such that P(n,m) is true for every integer m. [2]
- (f) Find an integer m such that <math>P(n,m) is true for every integer n. [0]
- (g) Show that whenever P(n,m) is true, then n and m are integers. [0]

(8) Let P(n,m) be a property about two integers *n* and *m*. If we want to DISPROVE the claim that "For every integer *n*, there exists an integer *m* such that P(n,m) is true", then we need to prove that [f = 14.29%, d = 100.00%, non-responses: 1]

(a) There exists an integer n such that $P(n, m)$ is false for all integers m .	[1]
(b) There exists integers n,m such that $P(n,m)$ is false.	[0]
(c) For every integer n , and every integer m , the property $P(n, m)$ is false.	[2]
(d) For every integer n, there exists an integer m such that $P(n, m)$ is false.	[0]
(e) For every integer m , there exists an integer n such that $P(n, m)$ is false.	[1]
\square (f) There exists an integer m such that $P(n, m)$ is false for all integers n.	[1]
(g) If $P(n, m)$ is true, then <i>n</i> and <i>m</i> are not integers.	[1]

(9) Let P(n, m) be a property about two integers n and m. If we want to DISPROVE the claim that "There exists an integer n such that P(n, m) is true for all integers m", then we need to prove that [f = 28.57%, d = -100.00%, non-responses: 2]

(a) There exists an integer n such that $P(n, m)$ is false for all integers m.	[1]
(b) There exists integers n,m such that $P(n,m)$ is false.	[0]
\square (c) For every integer <i>n</i> , and every integer <i>m</i> , the property $P(n, m)$ is false.	[0]
(d) For every integer n, there exists an integer m such that $P(n, m)$ is false.	[2]
(e) For every integer m , there exists an integer n such that $P(n,m)$ is false.	[1]
\square (f) There exists an integer m such that $P(n,m)$ is false for all integers n.	[1]
(g) If $P(n, m)$ is true, then <i>n</i> and <i>m</i> are not integers.	[0]

(10) Let X and Y be statements. Which of the following strategies is NOT a valid way to show that "X \implies [$f = 28.57\%$, $d = 100.00\%$, non-responses: 2]	Y"?
\Box (a) Assume that X is true, and then use this to show that Y is true.	[0]
\bigcirc (b) Assume that Y is false, and then use this to show that X is false.	[2]
\Box (c) Show that either X is false, or Y is true, or both.	[0]
\bigcirc (d) Assume that X is true, and Y is false, and deduce a contradiction.	[1]
\bigcirc (e) Assume that X is false, and Y is true, and deduce a contradiction.	[2]
\Box (f) Show that X implies some intermediate statement Z, and then show that $Z \implies Y$.	[0]
\Box (g) Show that some intermediate statement $Z \implies Y$, and then show that $X \implies Z$.	[0]

(11) Suppose one wishes to prove that "if all X are Y, then all Z are W". To do this, it would suffice to show that [f = 0.00%, d = 0.00%, non-responses: 1]

\Box (a) All Z are X, and all Y are W.	[0]
\square (b) All X are Z, and all Y are W.	[0]
\Box (c) All Z are X, and all W are Y.	[0]
\Box (d) All X are Z, and all W are Y.	[3]
\square (e) All Y are X, and all Z are W.	[2]
\Box (f) All Z are Y, and all X are W.	[0]
\Box (g) All Y are Z, and all W are X.	[1]

(12) Suppose one wishes to prove that "if some X are Y, then some Z are W". To do this, it would suffice to show that [f = 0.00%, d = 0.00%, non-responses: 2]

\Box (a) All X are Z, and all Y are W.	[0]
\Box (b) Some X are Z, and all Y are W.	[1]
\Box (c) All Z are X, and all Y are W.	[1]
\Box (d) All X are Z, and some Y are W.	[1]
\square (e) Some Z are X, and some Y are W.	[0]
\Box (f) Some Z are X, and all Y are W.	[1]
\Box (g) All Z are X, and all W are Y.	[1]

(13) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Y implies Z. If we also know that Y is false, we can conclude that [f = 0.00%, d = 0.00%, non-responses: 1]

\Box (a) X is false.	[1]
\Box (b) Z is false.	[2]
\Box (c) X implies Z.	[3]
\Box (d) Z is false and X implies Z. Correct Answer. X is false and X implies Z.	[0]
\Box (e) X is false and Z is false and X implies Z.	[0]
\Box (f) None of the above conclusions can be drawn.	[0]

(14) Let X, Y, Z be statements. Suppose we know that X implies Y, and that Z implies X. If we also know that Y is false, we can conclude that

[$f = 28.57\%$, $d = 0.00\%$, non-responses: 1]	
\Box (a) X is false.	[2]
\Box (b) Z is false.	[1]
\Box (c) Z implies Y.	[1]
\Box (d) Z is false and Z implies Y.	[0]
\Box (e) X is false and Z implies Y.	[0]
\Box (f) X is false, Z is false, and Z implies Y.	[1]
(g) None of the above conclusions can be drawn.	[1]